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When David Turnbull started his work on the undercooling of metallic
melts in the late 1940s, one of his most distinguished colleagues at the
General Electric Research Laboratory in Schenectady, New York, was
greatly skeptical about the likelihood of success—and not without rea-
son. The density and bonding of crystal and melt were known to be quite
similar, and many regarded the melt as a highly defective crystal or a
dynamic assembly of crystallites. The crystal-melt interface, unlike the
crystal-vapor or liquid-vapor interfaces, therefore did not appear to be
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2 FRANS SPAEPEN

the major discontinuity required for an effective barrier against crystal
nucleation. In fact, Turnbull’s colleague was so persuaded by these fac-
tors that he promised to eat his hat if the melt of a simple metal such as
copper could be undercooled more than a few degrees. David Turnbull
took this as a challenge, and in a few weeks demonstrated major under-
cooling of a large number of such melts. At the next group meeting his
colleague walked in with a headpiece made of cheese.

These experiments, which culminated in the classic demonstration of
homogeneous crystal nucleation in mercury and a set of measurements
of its isothermal Kkinetics,! were the basis of two fundamental insights
into the structure of liquids: (1) it is fundamentally different from that of
simple crystals and (2) it orders substantially near a crystal surface, with
the resulting entropy decrease being the main contribution to the crystal-
melt interfacial tension (or excess interfacial free energy?).

An important suggestion on the first point, directly inspired by Turn-
bull’s results, was made by Frank,> who pointed out that the short-range
energy minimization in a monatomic system favors icosahedral coordina-
tion shells. The fivefold symmetry and the predominance of fairly per-
fect tetrahedral configurations of the arrangement are incompatible with
the simple close-packed lattices (face-centered cubic, hexagonal close-
packed) that minimize the overall volume and energy.

The essential polytetrahedral nature of simple liquids and the ubiquity
of fivefold symmetrical local order were confirmed in the analysis of
physical models, such as the dense random packing of hard spheres* or
computer-generated ones,> and formed the basis of a formal description
of the liquid state in which a four-dimensional perfect polytetrahedral
polytope is mapped onto three-dimensional Euclidean space by the intro-
duction of disclination lines.®

The study of the structure and properties of the crystal-melt interface

'D. Tumbull, J. Chem. Phys. 20, 411 (1952).

2The identification of interfacial tension, which is defined mechanically, with the excess
interfacial free energy is strictly only valid for fluid-fluid interfaces. For the crystal-melt
interface, where one of the phases is solid and can sustain an elastic strain, the mechanical
definition leads to the introduction of an interface stress [see Ref. 35 and J. W. Cahn, Acta
Mezrall. 28, 1333 (1980)]. In this paper the two phases will be assumed incompressible, so
that the interface stress need not be considered.

3F. C. Frank, Proc. Roy. Soc. London A215, 43 (1952).

‘J. D. Bemnal, Proc. Roy. Soc. London A280, 299 (1964).

SFor a review, see F. Yonezawa in Solid State Physics (H. Ehrenreich and D. Turnbull,
eds.), Vol. 45, p. 179, Academic Press, New York (1991).

SFor a review, see D. R. Nelson and F. Spaepen, in Solid State Physics (H. Ehrenreich
and D. Turnbull, eds.), Vol. 42, p. 1, Academic Press, New York (1989).
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is difficult for a number of reasons.’ First, direct structural probes, which
have been extremely successful in the study of crystal-vapor and, to a
lesser degree, liquid-vapor interfaces, are as yet not available. Second,
the development of structural models has long suffered from the incom-
plete understanding of the liquid structure.

In early models, therefore, the specifics of the liquid structure were
mostly ignored. Some of those models were similar to those for intercrys-
talline boundaries (grain boundaries) in that their interfacial tension origi-
nates from the excess energy associated with a substantial density deficit
or, equivalently, bond breaking.® Other authors made the analogy with
the crystal-vapor interfaces® and used Ising models to predict interface
roughening. !

The crystal-melt interface, however, is intrinsically different from an
intercrystalline boundary. In the latter, all atomic positions are strongly
correlated by one or the other of the two adjacent crystals. High-
resolution microscopy shows that the two crystals extend right up to a
clear dividing surface, and that all atoms can unambiguously be assigned
to one or the other crystal (with an occasional shared one). This causes
a substantial density deficit.!! The positional correlations in the liquid
phase, however, are not as strong as in a crystal. As a result, the atoms
in the crystal-melt interface can adjust their position to the strong correla-
tions imposed by the crystal on one side to minimize the density deficit.
This leads to increased ordering of the liquid as the crystal is approached.

David Turnbull*? first pointed out that the entropy loss associated with
this ordering is the origin of the large crystal-melt interfacial tension (or
excess interfacial free energy), which creates the barrier to crystal nucle-
ation and allows sizable undercooling. As discussed in detail later (see
Fig. 4), he noted that the entropy must rise more slowly than the enthalpy
with distance away from the crystal surface.

Since then structural models that take proper account of the nature of
the liquid state, such as static physical models,'*!" in which the transition

A review of the early experimental work, modeling, and applications is given by D. P.
Woodruff, The Solid-Liquid Interface, Cambridge University Press, Cambridge, UK (1973).

8 A. D. Skapski, Acta Metall. 4, 576 (1956).

W. K. Burton, N. Cabrera, and F. C. Frank, Phil. Trans. Roy. Soc. A243, 299 (1951).

0K . A. Jackson, in Growth and Perfection of Crystals (R. H. Doremus, B. W. Roberts,
and D. Tumbull, eds.), p. 319, Wiley, New York (1958).

'Y, J. Frost, M. F. Ashby, and F. Spaepen, Scripta Metall. 14, 1051 (1980).

2D Turnbull, in Physics of Non-Crystalline Solids (J. A. Prins, ed.), p. 41, North-
Holland, Amsterdam (1964).

I3F. Spaepen, Acta Metall. 23, 729 (1975).

4F. Spaepen and R. B. Meyer, Scripta Metall. 10, 257 (1976).
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from crystal to melt is accomplished by enforcing a polytetrahedral struc-
ture, analytic models,'®2% and molecular dynamics simulations,?*-3! have
confirmed Turnbull’s view of the interface.

The neg-entropic nature of the crystal-melt interface must be reflected
in the temperature dependence of the interfacial tension, and hence also
in that of the frequency of homogeneous nucleation. Turnbull’s original
paper! already points out that the interfacial tension must increase with
temperature if the atomic jump frequency is to have a physically reason-
able value. Although the temperature coefficient indeed has a sign that
appears to agree qualitatively with the entropy loss, it has thus far not
been linked quantitatively to the structural models.

Part of the difficulty is that most of the models provide thermodynamic
information on the equilibrium state (i.e., for flat interfaces), whereas the
interfacial tension derived from homogeneous nucleation experiments is
obtained under strongly nonequilibrium conditions (i.e., for curved inter-
faces). In this chapter, the temperature dependence of the interfacial
tension under. both conditions is reviewed. Considerable literature is
available on flat and curved interfaces, going all the way back to
Gibbs.3%3 A simple model for the curved interface,* based on Turnbull’s

15D. R. Nelson and F. Spaepen, in Solid State Physics (H. Ehrenreich and D. Turnbull,
eds.), Vol. 42, p. 190, Academic Press, New York (1989).

'A. Bonnissent, J. L. Finney, and B. Mutaftschiev, Phil. Mag. B42, 233 (1980).

7C. V, Thompson, Ph.D. Thesis, Harvard University (1981).

BW. A. Curtin, Phys. Rev. Lett. 59, 1228 (1978).

®W. E. McMullen and D. W. Oxtoby, J. Chem. Phys. 88, 1967 (1988).

¥D. W. Oxtoby, in ‘‘Fundamentals of Inhomogeneous Fluids’’ (D. Henderson, ed.),
p. 407, Marcel Dekker, New York (1992).

21A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys. 74, 2559 (1981).

ZD. W. Oxtoby and A. D. J. Haymet, J. Chem. Phys. 76, 6262 (1982).

BB. B. Laird and A. D. J. Haymet, J. Chem. Phys. 91, 3638 (1989).

2#S. M. Moore and H. J. Raveche, J. Chem. Phys. 85, 6039 (1986).

BX. C. Zeng and D. Stroud, J. Chem. Phys. 90, 5208 (1989).

%]. H. Sikkenk, J. O. Indekeu, J. M. J. van Leeuwen, and E. O. Vossnack, Phys Rev.
Lett. 59, 98 (1987).

77]. Q. Broughton and F. F. Abraham, J. Chem. Phys. Lett. 71, 456 (1980).

2J. Q. Broughton, A. Bonnissent, and F. F. Abraham, J. Chem. Phys. 74, 4029 (1981).

2J. Q. Broughton and G. H. Gilmer, J. Chem. Phys. 84, 5741; 5749; 5759 (1986).

%E. Burke, J. Q. Broughton, and G. H. Gilmer, J. Chem. Phys. 89, 1030 (1988).

3'W.-J. Ma, J. R. Banavar, and J. Koplik, J. Chem. Phys. 97, 485 (1992).

2J. W. Gibbs, The Scientific Papers of J. Willard Gibbs, Dover, New York (1961).

3 An excellent review of the thermodynamics of flat and curved surfaces can be found
in J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Oxford Clarendon
Press, New York (1982).

MF. Spaepen, in Proc. Int. Workshop on Containerless Processing of Metals—
Undercooling and Solidification (1. Egry and J. Laakmann, eds.), p. 22, DLR-Mitteilung
89-15, Deutsche Forschungsanstait fiir Luft- und Raumfahrt, Koln, Germany (1989).
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Fi1G. 1. Schematic phase diagram of a single component system. The change of the interfa-
cial tension with temperature can be considered in equilibrium [path (a)] or in an un-
dercooled melt, as in nucleation experiments [path (b)].

original proposal for the interfacial structure, is introduced, and its ther-
modynamic properties are related to the nucleation data.

Il. The Equilibrium Interface

1. TEMPERATURE DEPENDENCE OF THE INTERFACIAL TENSION:
Excess INTERFACIAL ENTROPY

The thermodynamic properties of an interface between two phases in
equilibrium (e.g., point A on Fig. 1, the phase diagram for a single compo-
nent system) have been described definitively by Gibbs.?? The following
discussion is based on Cahn’s particularly clear exposition of Gibbs’s
approach.? For simplicity, only the single component system is con-
sidered.

Consider a system consisting of N moles distributed between two
phases, a and B, in equilibrium, separated by an interface with area A.
Equilibrium dictates that the interface be flat. The Gibbs free energy of
the total system (including the interface) is:

G=U-TS +pV, (1.1)

33J. W. Cahn, in Interfacial Segregation (W. C. Johnson and J. M. Blakeley, eds.),
pp. 3-23, ASM, Metals Park, OH (1979).
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where U, §, and V are, respectively, the total energy, entropy, and vol-
ume of the system. The Gibbs free energy of the two phases without the
interface is:

Gb = “’Na (1-2)

where p is the chemical potential (the same in both phases in equilib-
rium). The interfacial tension? o can then be defined as the excess free
energy, per unit area, in the system due to the presence of the interface,
or:

cA=U-TS +pV.— pN. (1.3)
Differentiating gives:
0dA + Ado = dU — TdS — SdT + pdV + Vdp — pdN — Ndp. (1.4)
Since odA is the force-times—distance work done by the interfacial ten-
sion when the area is increased by dA, the combination of the first and
second laws of thermodynamics gives:
dU = TdS — pdV + pdN + odA. (1.5)
Combination of Egs. (1.4) and (1.5) gives:
Ado = —S8dT + Vdp — Nd.. (1.6)

For each of the two bulk phases a similar relation, the Gibbs-Duhem
equation, holds:

0= —-8°dT + V*dp — N°dp., (1.7)
0= —SBdT + VRdp — NBdp. (1.8)
The assignment of the atoms to the two phases requires the placement

of a dividing surface, which at this point is arbitrary. The only condition
that must hold is, obviously:

N® + NB = N. (1.9)

The temperature dependence of the interfacial tension is found by solving
the system of three equations [Egs. (1.6), (1.7), and (1.8)] and three un-
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knowns (dT, dp, and dp.). Following Cahn, this is most conveniently done
with Cramer’s rule from linear algebra:

S V N
S ve N°¢
SP VP NB
Ado = — dT. (1.10)
Ve N¢
Ve NP

At this point, it is convenient to choose the position of the dividing sur-
face such that the excess volume associated with the interface is zero
(Fig. 2), or:

Neve + NByB =Ve + VP =V, (1.11)

where v* and vP are the molar volumes of the two bulk phases. Subtrac-
tion of the lower two rows from the top one in the determinant in the
numerator of Eq. (1.10) then makes two of the elements equal to zero
[see Eq. (1.9) and (1.11)] and leads directly to the solution:

do
—_— = — 1.12
dT Sex’ ( )
where
— _1_ _ Ca _ CB
Sex =7 (S = 5% = SP) (1.13)

is the excess entropy, per unit area, associated with the interface (Fig. 2).

It is important to keep in mind that Eq. (1.12) only holds in equilibrium,
where the variation dT must be accompanied by a variation in pressure,
dp, along the coexistence line [path (a) in Fig. 1]. It cannot, therefore,
be applied, as many authors have done!4*3 to undercooling experi-
ments, where the external pressure is kept constant [path (b) in Fig. 1].
In that case, only unstable equilibrium at a curved surface can be estab-
lished, and a different analysis must be made.

3y. Miyazawa and G. M. Pound, J. Cryst. Growth 23, 45 (1974).
37G. R. Wood and A. G. Walton, J. Appl. Phys. 41, 3027 (1970).
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—3»

dividing surface distance
N% moles moles

FiG. 2. Schematic diagram of the variation of the molar volume v and the molar entropy
s across an interface in equilibrium. The superscripts refer to the values in the bulk phases.
If the (negative) excess interfacial entropy, — S ex> 1S 10 be equal to the temperature coeffi-

cient of the interfacial tension, the dividing surface must be chosen to give zero excess
volume.

lll. The Interface in an Undercooled Melt

2. THE INFINITELY THIN INTERFACE

If, in the Gibbsian sense, abstraction is made of the interfacial structure
and the interface is reduced to a mathematically two-dimensional surface
with interfacial tension o separating a crystal and melt with bulk proper-

ties, the (unstable) equilibrium condition at a curved surface is estab-
lished as follows.
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(a) (b)

interface

o

liquid liquid
F16. 3. Schematic diagram illustrating unstable equilibrium of a spherical crystal (solid)

in an undercooled melt (liquid) with (a) an infinitely thin interface and (b) a physical interface
of width 9.

Consider the case of a single-component, incompressible, spherical,
and isotropic crystal of radius r, surrounded by its melt [Fig. 3(a)]. The
work required to form this crystal from the melt is3238;

47r’

WG= 3

AG, + 4nro, @.1)

where AG is the difference in Gibbs free energy, per unit volume of the
crystal, between the bulk crystal (solid) and its undercooled melt (liquid).

The condition for equilibrium is that W be at an extremum for a varia-
tion dr of the radius:

dw
-—dr—G = 47wr*AGy + 8wro = 0. (2.2)

This gives the condition for the radius of curvature:

20
* —
rg AGSI. (2.3)

3D. Tumbull, in Solid State Physics (F. Seitz and D. Turnbull, eds.), Vol. 3, p. 225,
Academic Press, New York (1956). .



10 FRANS SPAEPEN

The work to form the crystal in (unstable) equilibrium is then

3

Wk — 167 o

=3 a6 (2.4)

We will return to the question of the location of the interface after the
discussion of the physical interface of finite width. This requires first a
brief review of its structure.

3. STRUCTURE AND PROPERTIES OF THE PHYSICAL INTERFACE

Physical modeling,!*!” analytic studies,'®* and computer simulation26-3!
of the crystal-melt interface in simple systems (hard sphere, Lennard-
Jones, or metallic) produce atomic density profiles that are all qualita-
tively similar to the one sketched in Fig. 4(a). The interface has a thick-
ness on the order of a few interatomic distances and consists of atoms
that are localized, to a degree that depends on the distance from the
crystal, in layers parallel to the interface.

Note that the apparent width of the interface in simulations of the
interface is an upper limit of the intrinsic transition width of interest here.
This is due to the formation of crystal terraces, which have only a slight
effect on the thermodynamics of the interface. The intrinsic width is more
clearly identifiable in static physical modeling, where the planarity of the
crystal can be enforced.

Since the structure of the interfacial layers is different from that of the
two bulk phases, the enthalpy and entropy in the interface are different
from their bulk values in the two phases as well. For example, the local-
ization makes the entropy lower than in the bulk liquid. If the interface
had a substantial density deficit, as in a grain boundary, its enthalpy could
be higher than that of both bulk phases. If, as is found in most structural
models, the density deficit is small, the interfacial enthalpy is expected
to be intermediate between the two bulk values.

Fi16. 4. Schematic illustration of the variation of the structure and thermodynamic proper-
ties of the crystal-melt interface with distance across the interface: (a) average atomic
density; (b) atomic enthalpy and entropy, in equilibrium at the melting temperature T,,; the
horizontal lines correspond to the interfacial enthalpy 4; and entropy s; in the approximate
model of a uniform interface; (c) free energy per atom below the melting temperature
(crystal in an undercooled melt); r is the distance from the center of the crystal (solid); and
(d) the free energy per unit volume for the uniform interface below the melting temperature.
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We should emphasize from the outset that the description of the inter-
face as a region with its own thermodynamic parameters does not imply
that it is being treated as a separate phase.* It can only exist between
the two bulk phases, and its thermodynamic parameters only have mean-
ing as transition parameters between the bulk values. The approach de-
veloped next has, in fact, the same basis as that of the so-called ‘‘quasi-’’
or ‘‘local’’ thermodynamic methods used for the study of interfaces.>?

Figure 4(b) shows a plausible variation of the entropy and enthalpy,
per atom, as a function of position through the interface between the two
phases in equilibrium (the bulk free energies, g, = h, — T s, and g, =
h, — Tys,, are equal and have been made equal to zero). The interfacial
tension is proportional to the area between the two curves (normalized
by the atomic volume). As Turnbull first pointed out,'? for the interfacial
tension to be positive, and hence for the undercooling of liquids to be
possible, the entropy in the interface must rise more slowly with distance
from the crystal than the enthalpy.

4. INTERFACIAL TENSION OF THE PHYSICAL INTERFACE

The arguments of Section 2 can be repeated for a spherical crystal with
a full interface of thickness & [see Fig. 3(b)], if the variation of the free
energy, per atom, in the radial direction, g(r), is known, as sketched in
Fig. 4(c). The approach is similar to that of Cahn and Hilliard for the
formation of nuclei with a diffuse interface®® and has been outlined in
an earlier publication.’* Again, it is assumed that the system has one
component, and that the crystal and interface are isotropic and incom-
pressible.

The work W required to create a crystal of radius r, in the liquid is
then the sum of the work to form concentric spherical shells of the crystal
and the interface:

4'n'r
W) = [ le() -~ gl gy @ @.1)
where Q(r) is the local atomic volume and
glr) =g, forr=r,,
g(r) forr,=r=r, +3, 4.2)

gl =g forr,+38=r,

®E. A. Guggenheim, Thermodynamics, North-Holland, Amsterdam (1967).
©3. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688 (1959).



THE CRYSTAL-MELT INTERFACIAL TENSION 13

where g, and g, are the free energies, per atom, of the crystal and the
liquid, respectively.
The radius of the crystal in (unstable) equilibrium with the melt, r¥, is

again obtained by requiring that W be an extremum for a variation of r;
[see Fig. 3(b)l:

dwW
dr,

= 0. (4.3)

L
rs

Inserting r¥ into Eq. (4.1) gives the work needed to create the crystal in
equilibrium with the melt:

W* = W(r*). (4.4)

This work is now equated to W§ of Eq. (2.1), the work required to form
a crystal in equilibrium with its melt through a Gibbsian dividing surface,
for the same difference in free energy between the bulk phases, AG;:

16w o’
W* = 3 AGz,' 4.5)

Since W* has been calculated from the properties of the interface, and
AG, i1s known from the bulk thermodynamics of the two phases, Eq.
(4.5) 1s in fact a definition of the interfacial tension, or:

1/3
— __3__ 2 *)
o= (1 - AGLW*) . (4.6)

The interfacial tension defined this way is also the one obtained from
homogeneous nnucleation, since the critical work measured in those ex-
periments is precisely that of Eq. (4.5).

Finally, the position of the Gibbsian dividing surface, r&, for the partic-
ular interface model used in the calculations is found by substituting the
known value of o [Eq. (4.6)] and of AG,, into Eq. (2.3). As shown in
Appendix A, the position of r§ is such that the excess free energy, com-
puted spherically, with respect to that dividing surface equals cA%,
where A{ is the area of the dividing surface and o is given by Eq. (4.6).

In Appendix B explicit formulas are given for o and r¢ in terms of the
moments of the free energy g(r). The method is actually most clearly
illustrated by working out a simple example, as shown in the next section.
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5. A SiMPLE MoODEL: THE UNIFORM INTERFACE

a. Calculation of the Interfacial Tension at Constant
Temperature

The interface model under consideration in this section has the following
properties [see Figs. 4(b) and 4(d)]: (1) The interface has a thickness §;
(2) the entropy and enthalpy, and hence the free energy are uniform
throughout the interface; (3) the entire system—crystal, liquid, and inter-
face—is incompressible; and (4) all atoms in the system have the same
atomic volume.

Properties (1) and (2) are the essential features of the model. Assump-
tion (3) is a common, and quite accurate one for condensed phases; it is
essential for the formulation of the work according to Eqs. (2.1) and (4.1);
it also obviates the need to consider the interface stress? and effects of
pressure. Assumption (4) is made for computational convenience; it, too,
applies fairly accurately to the bulk crystal and liquid phases, as well as
to the interface, which has a low density deficit.

The quantities used for the computation of the interfacial tension are
indicated on Fig. 4(d). The G, and G, represent, respectively, the free
energies per unit volume of the crystal and the liquid. Their difference,
AG, = G; — G, is negative below the melting temperature. The H;, S;,
and G; = H; — TS, represent, respectively, the enthalpy, entropy, and
free energy per unit volume in the interface. Two additional free energy
differences can be defined. On the liquid side, AG; = G; — G,; and on
the solid side, AG; = G; — G,. For the interface to be stable, both of
these quantities must be positive. It is useful to remember that AG; =
AG; - AG,.

In equilibrium, T = T,,and AG,, = 0, so that AG; = AG!. The interfa-
cial tension is then simply

o = 3AG,. (5.1)

In the following, T,,, AG;, and AG| are different, and o must be a symmet-
rical function of both of them. The method outlined in the previous sec-
tion is now used to determine that function.

The work required to create the crystal and the interface in the un-
dercooled liquid is, from Eq. (4.1) or by inspection,

3
41rr;

W=3

AG, + %rr_ [(r, + 3)® — r21AG; (5.2)
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This can be simplified by introducing a dimensionless measure for the
driving free energy:

_AG,

a=- G’ (5.3)
which 1s a negative quantity. Equation (5.2) then becomes:
4m 3 2 2 3
W= —3—AG,- (ar; + 3rid + 3r,d° + 8°). (5.4)

The condition that establishes the equilibrium radius, dW/dr, = 0 [Eq.
(4.3)], becomes:

ar’ +2r,5 + 8 = 0. (5.5)

The equilibrium radius is then:
re = —-2-(1+ V1 - a), (5.6)

which by introduction of
b*=1-a, (5.7

simplifies to
r¥= — —— (5.8)

Note that the length scale of the problem is set by the thickness of the
interface 8—the only length introduced into the model.

The work required to form the equilibrium crystal and its interface is
now obtained from Eq. (4.4), i.e., by substitution of Eq. (5.8) into (5.4):

bz
(1 -by

W* = ‘—?AG,-83

(5.9

The interfacial tension is then obtained from Eq. (4.6):

2
o3 = i-aMG,? (1 ‘_‘_bb). (.10
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This can be put in a more transparent form by eliminating a and b using
their definitions of Egs. (5.3) and (5.7):

o = 8(AG;* AG! - AG; ,.0)"%, (5.11)

where

AGiae = [AG)™ + (AGI)RT

(3.12)

= % [% (AG, + AG)) + (AG; - AG;)"Z].

Note that the last form of this expression states that AG; ,,. is the arith-
metic average of the arithmetic and geometric averages of AG; and AG;.
Equations (5.11) and (5.12) also have the desired symmetry between the
solid and liquid side.

b. Temperature Dependence of the Interfacial Tension

To apply Eq. (5.11) at different temperatures, the model must be specified
further. For example, the following, quite plausible additional assump-
tions suffice: (1) The interface thickness 3 is independent of temperature;
(2) the difference between the enthalpy or entropy of the interface (both
per unit volume) and its respective value in the bulk liquid, AH; = H; —
S,or AS; = §; — §,, is independent of temperature; and (3) the difference
in specific heat between the liquid and crystal is zero; as a result, the
enthalpy of fusion, AH, = H, — H, (positive) and entropy of fusion
ASy, = §; — S, (positive) are independent of temperature, and AG,, =
ASAT — Ty). -

With these assumptions, numerical computation of o(T) from Egs.
(5.11) and (5.12) is straightforward. For application and generalization,
it is useful to have an expression in dimensionless form. The obvious
dimensionless variables are:

h = AH/AH;,
§ = AS;sSy, (5.13)
T = T/TM,
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where \ is an atomic dimension, for example, (V/N)'? (where V = molar
volume and N = Avogadro’s number). Keeping in mind that T,/ AS, =
AH;,and AG; = AG; — AG, [see Fig. 4(d)], Egs. (5.11) and (5.12) yield:

&= é{(ﬁ —T5) - (h=T5-T+ 1)-%[(1% — T5)2
- (5.14)
+(h-Ts - T+ 1)"2]2} .

Of the assumptions made here, (2) is the essential one: It reflects the idea
that the interfacial tension originates from the accommodation of the
liquid structure to the structural constraint posed by the crystal plane. An
alternative assumption, of constant differences in enthalpy and entropy
between the interface and the crystal, AH! and AS;, would be based on
considering the interface as a disordered crystal. Assumption (3) can
easily be modified if specific heat data are available, and (2) could then
be adjusted so that AS; would be, for example, a constant fraction of
AS;. Keep in mind that the changes in AH; and AS; with temperature are
linked through the interface specific heat, and therefore cannot be varied
independently. Assumption (2) used here, for example, is consistent with
the interface specific heat being zero.

A similar model has recently been proposed by Granasy.! It is essen-
tially a special case of the one discussed earlier, in that the interfacial
entropy and enthalpy are kept at, respectively, the bulk liquid and crystal-
line values. The interfacial width & then needs to be adjustable and can
no longer simply be related to structural models of the interface as is
done below.

6. THE SIMPLE MoODEL AT Low UNDERCOOLING

The quickest insight into the problem is found by introducing the further
simplification of low undercooling. A treatment of the entire problem
under these conditions is very brief, and has been published elsewhere.*
The simplification of the preceding results proceeds as follows.

At low undercooling, i.e., for T < T,,, |AG,| < G; and AG| = AG,;.
Since the geometric and arithmetic averages.in Egs. (5.11) and (5.12) are

Y'L. Granasy, J. Non-Crystalline Solids, 162, 301 (1993).
“2F. Spaepen, Mat. Sci. Eng. A, 178, 15 (1994).
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the same to first order in their difference, AG,;, Eq. (5.11) depends simply
on the arithmetic average:

o= 8%(AG,- + AG)), 6.1)
or
o= S(AG,- - %AGS,>, 6.2)

or, in dimensionless form,

s=5(h-Ts— L4l
cr-B(h Ts 2+2). (6.3)

This 1s illustrated in the lower part of Fig. 5. Keeping in mind that

dAG,
—a'T— = —AS,- and

IAG,
7 = —AS, (6.4)

the temperature coefficient at low undercooling is easily found:

do 1
o7 = ~O(AS; +SAS)), (6.5)

or, in dimensionless form, directly from Eq. (6.3):

dc .1
r —S(S + 2). (6.6)

The location of the Gibbsian dividing surface, defined by Eq. (2.3), can

also be easily found under these conditions. Keeping in mind the defini-
tion of the dimensionless driving force a [Eq. (5.3)], Eq. (6.2) gives:

AG;
rz";s-——gg—:—zs( '+1)=8<—-%+1>. (6.7)

Expansion of the expression for the radius of the solid [Eq. (5.6)] to first
order in a gives: -
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F1G. 5. Schematic diagram of the properties of the uniform interface model at low under-
cooling.

s o[ _241
rs—8< a+2>. (6.8)

To lowest order, the two radii are the same and are equal to the classical
radius of Eq. (2.3), since to that order o = 3AG;. The difference between
them in the next order shows that the Gibbsian dividing surface in this
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model, at low undercooling, lies right at the middle of the interfacial
layer:

re-rr=2 (6.9)

Figure 5 shows the location of the surface. Note that the interfacial ten-
sion 1s indeed the excess free energy computed with respect to this inter-
face (cross-hatched area in the lower part of the figure), as discussed at
the end of Section 4 and in Appendix B.

Figure 5 and Eq. (6.5) also show that the temperature coefficient of the
interfacial tension is the (negative) entropy excess computed with respect
to this same surface.

IV. Application to the Analysis of Homogeneous
Nucleation Experiments

7. REANALYSIS OF THE DATA FOR MERCURY

As pointed out in Kelton’s recent review in this series,* there are only
two sets of quantitative data on the kinetics of homogeneous crystal nu-
cleation from the melt in metals: those of Turnbull’ on mercury and those
of Miyazawa and Pound®® on gallium. Both make use of the emulsion
technique to isolate the heterogeneous nucleants.

To establish that homogeneous nucleation has been measured, two
conditions must be met*: (1) The maximum undercooling should be inde-
pendent of the nature of the surface of the droplets and (2) the steady
state nucleation rate I should be stochastic in volume and time. The latter
can be established in two ways: (a) by a detailed analysis of the kinetics
on the size distribution of each dispersion or, more convincingly, (b) by
showing that for dispersions with different average size d, the nucleation
probability of a droplet scaled with d ~3.

In Turnbull’s experiments on mercury all of these conditions were met.
In those on gallium, however, condition 2b was not met: For reasons
that are not understood, I scaled with d~!. Nevertheless, similar conclu-
sions on the temperature dependence of the interfacial tension emerged
from the two sets of experiments.

BK. F. Kelton, in Solid State Physics (H. Ehrenreich and D. Turnbull, eds.), Vol. 45,
p. 75, Academic Press, New York (1991).

“D. Tumbull, in Undercooled Alloy Phases (E. W. Collings and C. C. Koch, eds.),
p. 3, The Metallurgical Society of AIME, Warrendale, PA (1986).
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TaBLE I. DATA (FROM REF. 1) AND ANALYSIS OF THE KINETICS OF HOMOGENEOUS
CRYSTAL NUCLEATION FROM THE MELT IN MERCURY

T log I Agy y AT
(K) (cm™3s~hH (J/mole) (erg/cm?) (x 10%)
Dispersion 1
153.62 7.105 814.50 30.270 1.0058
153.89 6.970 812.10 30.277 1.0099
154.34 6.686 808.08 30.308 1.0170
Dispersion 2
154.15 6.948 809.78 30.244 1.0140
154.36 6.790 807.91 30.268 1.0173
154.64 6.592 805.41 30.294 1.0218
154.91 6.444 803.00 30.303 1.0262
155.12 6.244 801.12 30.340 1.0296
155.40 6.077 798.62 30.354 1.0342

In the mercury experiments, the steady state isothermal nucleation
rate was measured at several temperatures in the range of 153.62 to
155.40 K, and the results are listed in Table 1.

In classical nucleation theory, the nucleation rate is determined by the
work to form the critical nucleus [Eq. (2.4)] according to the expression:

16703 )

I=1ex <— (7.1)
P\ 73kTAG?

where k is Boltzmann’s constant and I, is a prefactor that takes into
account the jump frequency across the interface of the critical nucleus.

In the onginal analysis, a value for o was extracted from the 1(T) data,
under the assumption that it was independent of temperature and that
the difference in specific heat between crystal and liquid was zero. This
gave ¢ = 31.2 erg/cm? and I, = 102 cm™3 s~!. A theoretical estimate!
of the prefactor, based on absolute rate theory and viscosity data for Hg,
is I, = 10 cm™3 s~!. Turnbull pointed out in his original paper that this
discrepancy must be explained by the temperature dependence of o and
AG,.

We will therefore reexamine the analysis of these nucleation data by
taking into account the experimentally measured difference*** in specific

“R. H. Busey and W. F. Giauque, J. Phys. Chem. 75, 806 (1953).
4J. H. Perpezko and D. H. Rasmussen, Mez. Trans. A9, 1490 (1978).
4C. V. Thompson and F. Spaepen, Acta Metall. 27, 1855 (1979).
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heat between crystal and liquid, AC,, in the computation of AG,,(T). The
undercooled temperature range was divided into three regions; in each
AC, (in J/mole K) was approximated by a linear relation:

23428 K — 195K AC, = 10.274 — 0.0473T,
17K -195K AC, = 13.506 — 0.0604T, (7.2)
150K -175K AC, = 13.679 — 0.0614T.

Integration gives the difference in the bulk free energies, Agg, at the
undercooled temperature. The molar volume of the crystal at 154 K was
computed from crystallographic data* (14.086 cm?/mole at 227 K) and
the thermal expansion® (average value over the relevant range: 14 x
107> K1) to be 13.945 cm3/mole.

First, we reconsider the case of a constant interfacial tension. Equation
(7.1) can be rewritten as:

log1 =logl, — o f(T), (7.3)
where all the temperature-dependent factors are collected in a function:

16m loge
3 AG4kT

AT) = (7.4)

which is listed in the last column of Table I. A linear fit of log I versus
S(T) for all of the data of Table I gives o = 33.26 erg/cm® and I, =
10% cm™? s~1. The even larger discrepancy with the theoretical prefactor
must be attributed to the only remaining temperature dependence, that
of o.

To find the temperature dependence of the interfacial tension, the pre-
exponential factor in Eq. (7.1) is set equal to the theoretical value, I, =
10 cm~2® s7!, and o(T) is computed for each temperature. The results
are listed in Table I and plotted in Fig. 6. A linear fit to all the data gives:

o = 22.46 + 0.0507T, (7.5)

where o is in erg/cm? and T is in K. A fit to the just data from dispersion
2, for which most data were taken, gives, in the same units:

o = 16.74 + 0.0876T. (7.6)

“W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys,
Vol. 1, p. 683, Pergamon Press, New York (1958).

®G. Borelius, in Solid State Physics (F. Seitz and D. Turnbull, eds.), Vol. 15, p. 13,
Academic Press, New York (1963).
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Fic. 6. Experimental temperature dependence of the crystal-melt interfacial tension for
mercury, derived from Turnbull’s homogeneous nucleation data (Ref. 1). The squares and
circles correspond, respectively, to dispersions 1 and 2 of Table 1. The solid line is a linear
fit to all the data; the dashed line is a linear fit to the data for dispersion 2.

Although the data for gallium® do not as unambiguously correspond
to homogeneous nucleation, it is still interesting to note that an analysis
similar to the preceding one above also gives a positive temperature coef-
ficient (same units):

o = 53.8 + 0.055T. (7.7)

A positive temperature coefficient of a crystal-melt interfacial tension
obtained from homogeneous nucleation data was also found for water®’
(same units):

o= —25.67 + 0.211T. (7.8)

This case 1s of interest because the value of the interfacial tension at the
melting temperature is known®: o(Ty) = 33 = 3 erg/cm’, in agree-

%P. V. Hobbs and W. M. Ketcham, in Physics of Ice (N. Riehl et al., eds.), p. 95, Plenum
Press, New York (1969).
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ment with the linear extrapolation of Eq. (7.8) at T u =213 K:a(Ty) =
31.9 erg/cm®. No such comparison can as yet be made for the metals.
The linear extrapolation needs to be reconsidered as well.

8. INTERPRETATION OF THE TEMPERATURE DEPENDENCE OF THE
INTERFACIAL TENSION

The uniform interface model of Sections 5 and 6 has three unknowns: 9,
AS;, and AH;; Turnbull’s data provides two values to fit (both in the
narrow undercooled temperature range): o and do/dT in Eq. (7.5) or
(7.6). One of the model parameters must therefore be estimated first. For
example, the width of the interface, assumed uniform, in a physical hard
sphere model of the interface!*!® is 1.46 monolayers, or 3.69 A for
mercury.’!

The results of Section 6 can be used by inspection for a first estimate
of the remaining interface parameters. Equations (6.3) and (6.6) give § =
—0.70 and A = —0.13 for the data of Eq. (7.5);and § = —0.84 and /1 =
—0.22 for the data of Eq. (7.6). Note that Eq. (6.6) also implies generally
that, since the interface thickness & must obviously be positive, a positive
temperature coefficient can only be obtained if § < —0.5, i.e., if there is
a substantial entropy loss.

A more precise determination requires the use the results of Section
5. The numerical determination was made by differentiating Eq. (5.14),
which gives:

deldT 1(5 §+ 1 § §+ 1 )
— = —=|= — + + , (8.1)
s : i+\ViE &+ VEE
where
g=h-T5 and ¢ =h-Ts-T+1, (8.2)

are the values of AG; and AG; normalized by the enthalpy of fusion. After
choosing a value for §, Eq. (8 1) can be solved numerically for 4. The
interface thickness is then obtained directly from Eq. (5.14):

O

1/3
4
=6 : 8.3
U[g'g'(\/g? + \/?)2] -7

S'Data used for mercury calculatnons CN12 radius: 3.10 A which gives an effective
close-packed plane spacing of 2.53 A. AS; = 0.70919 J/K - cm? at 154 K, using V = 13.945
cm?/mole, discussed on p. 22; see Refs. 48 and 49.
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FiG. 7. Temperature dependence of the interfacial tension for mercury computed ac-
cording to Eq. (5.14) for an interface thickness 8 = 3.69 A. Dashed line: fit to all the data
of Fig. 6, with § = —0.55 and £ = —0.01; solid line: fit to the data of dispersion 2 in
Fig. 6: § = —0.68 and 4 = —0.10.

The requirement of a positive interface thickness is satisfied as long as g
and g’ are both positive, which is, of course, an essential condition for
the stability of the interface (see above). Furthermore, since the left-hand
side of Eq. (8.1) is positive, it can only be satisfied if § < 0, i.e., if there
is a loss of liquid entropy in the interface.

Iterative solution of Eq. (8.1) and (8.3) with the chosen value of the
interface thickness (8 = 3.69 A) gives for the two remaining parameters:
§ = —0.55 and h = —0.01 for the data of Eq. (7.5); and § = —0.68
and h = —0.10 for the data of Eq. (7.6). Figure 7 shows the tempera-
ture dependence of the interfacial tension computed over the entire un-
dercooled temperature range using Eq. (5.14) and the two sets of fit pa-
rameters.

The values of the fit parameters can now be compared to those in the
physical model chosen to provide the value for 3. The enthalpy in the
hard sphere system is, of course, zero by definition. However, since
the density of the interface is close to that of the liquid, one would expect
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the interfacial enthalpy in the presence of an interatomic potential to be
close to the value in the liquid, or # = 0.

The entropy of the static, hard sphere interface was first calculated
approximately'* using an assumption similar to those used by Pauling for
proton disorder in ice.’> A more accurate value was obtained later based
on an exact solution for the dimer disorder on a honeycomb lattice.!5-53-54
The results can be summarized as follows.

Since the density of the interface is close to that of the liquid, its
vibrational entropy is similar; the vibrational contribution to the heat of
fusion in metals is estimated’® at As, = 0.2 k/atom. The configurational
entropy of the atoms in the first interfacial layer, i.e., the one closest to
the last crystal plane and labeled *‘I’” in Fig. 4(a), is very small (s; =
0.113 k/atom). This is because the layer is fully localized in the direction
normal to the interface and, because of its high density (close to that of
the liquid), derives only little entropy from its lateral noncrystallinity.
The next layer in the interface [labeled ‘“II’’ in Fig. 4(a)] is less localized
than the first one; analysis of the model shows that 46% of the atoms in
that layer need to be localized, and hence derive their entropy from the
configuration of the first layer.!* The contributions from the next layers
(I1I, etc.) are considered negligible. Since there are, then, 1.46 atoms in
the interface per atom in the first layer, the average fractional loss of
entropy per atom in the interface is

s; + 1.46 As, 1

As, (8.4)

S =

The entropy fusion per atom, Asy, is close to 1.2 k for metals. Using the
value for Hg, As, = 1.17 k/atom, gives § = —0.76. This value is slightly
higher than the parameters for the rigorous fit. This may reflect the ap-
proximation of a uniform interface in the model. Computation of the
tension for a layered interface, which is a straightforward extension (see
Appendix B), will be undertaken to test this. The interfacial entropy may
also be raised slightly by the introduction of crystal terraces, which are
not present in the static hard sphere model. Finally, it should be kept in
mind that the fit is sensitive to the choice of the interface thickness. For
example, if the interfacial entropy is kept fixed at the model value § =
—0.76, the interfacial thicknesses become 2.09 and 3.17 A for the data
of Eq. (7.5) and (7.6), respectively.

521, Pauling, J. Am. Chem. Soc. 57, 2680 (1935).
3V. Elser, J. Phys. A17, 1509 (1984).
P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963).
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V. Conclusions

A classical analysis, based on the Gibbsian description of interfaces, of
the temperature dependence of the crystal-melt interfacial tension at con-
stant external pressure (i.e., for a finite crystal in an undercooled melt)
shows that the temperature coefficients obtained from homogeneous nu-
cleation experiments can be accounted for, as originally proposed by
Turnbull, by the entropy loss in the liquid due to ordering near the crystal
surface. Analysis of the equilibrium interface'® ! in the hard sphere sys-
tem confirms that the interfacial entropy losses are sufficiently large to
account entirely for the magnitude of the interfacial tension, since the
enthalphic contribution in this system is by definition zero.

Equation (5.14) can be used as an improved expression for the tempera-
ture dependence of the interfacial tension in modeling of nucleation. The
fit to the nucleation data for mercury suggests that 4 = 0, § = —0.6,
and & = 1.3 [see Eqgs. (5.13) for the definitions] are reasonable average
parameters for close-packed metals.

In a nonequilibrium system, the interfacial tension is only a parameter
introduced in the Gibbsian accounting for the work to form a critical
nucleus [see Eq. (4.6)], and experimentally only that work can be mea-
sured. It is therefore entirely possible to analyze the nucleation data with
a model of the interface without explicitly defining an interfacial tension.
In equilibrium, however, the tension can be measured directly” and a
determination at undercooled temperatures is then useful for comparison
with the equilibrium value. The experiments on water are an example.3”-5
Note that the linear extrapolation that gave agreement between the two
sets of measurements needs to be reconsidered (see Fig. 7). Measure-
ments of the tension in equilibrium for mercury, for example, or determi-
nations of the tension from homogeneous nucleation of succinonitrile, for
example, would be most valuable to test the models further.

Finally, keep in mind that the analysis presented here has the classic
limitation of the Gibbsian approach: It assumes that the bulk properties
of the crystal are also valid at least at the center of very small nuclei.
Obviously, at the smallest sizes, where all but a few atoms are at the
surface, this assumption must break down. In Turnbull’s experiments on
mercury, there are almost 1000 atoms in the nucleus, so that its center
is probably rather bulk-like. The Gibbsian approach is surprisingly suc-
cessful in the description of the nucleation of liquids from the vapor,3®-¢
indicating that the extrapolation of the thermodynamic properties can be

$R. J. Schaefer, M. E. Glicksman, and J. D. Ayers, Phil. Mag. 32, 725 (1975)
%3. L. Katz, J. Chem. Phys. 52, 4733 (1970).
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extended to quite small nucleus sizes. This is confirmed by an analysis
of the surface and bulk contributions to the energy of small clusters.’
The recent enormous expansions in computer power will make it possible
to test this on dynamic models of crystal nuclei in the melt.58-60

ACKNOWLEDGMENTS

It has been my privilege to be associated with David Turnbull for many years. He introduced
me to the problems of the crystal-melt interface when I was still a graduate student, and I
have benefited enormously from his insights on this and many other subjects. I congratulate
him on his retirement as editor of the Solid State Physics series, knowing that his will be
a hard act to follow. I also thank him, Mike Aziz, Peter Voorhees, and John Hirth for
useful discussions and comments on this chapter. This work has been supported by the
National Aeronautics and Space Administration under contract NAGW2838, and by the
National Science Foundation through the Harvard Materials Research Laboratory under
contract DMR-89-20490.

Appendix A: Calculation of the Interfacial Tension
as an Excess Quantity for a Curved Interface

These are simple, definitional arguments that will be obvious to many by
inspection. For ease of reading, they are spelled out. First, define some
volumes associated with the various spherical surfaces in the problem
(Fig. A.1): V¥ is the volume of the sphere with radius r*; V, is the volume
between the spheres with radius r¥ and r¥; V, is the volume between the
spheres with radii r§ and r¥ + 3; V& is the volume of the sphere with
radius rg&. Hence,

Vi=V* 4V, (A.1)

The work to form a crystal with radius r? is, according to Egs. (4.1) and
(4.2), with € kept constant for convenience (see also Appendix B):

W=G,V,+1,+1,- G(V, + V, + V), (A.2)

>’ An analysis of the energy of small clusters in a Lennard-Jones potential [M. R. Hoare
and P. Pal, Adv. Phys. 20, 161 (1971)] shows that the surface tension starts deviating from
the macroscopic prediction below about 30 atoms (F. Spaepen, unpublished results).

*M. J. Uttormark, S. J. Cook, M. O. Thompson, and P. Clancy, MRS Symp. Proc. 205,
417 (1992).

¥J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 90, 1585 (1986).

%J. S. van Duijneveldt and D. Frenkel, J. Chem. Phys. 96, 4655 (1992).
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Fic. A.1. Schematic diagram of the radii, volumes, and area defined in the calculation
of the interfacial tension as an excess quantity for a curved surface. The shaded area
corresponds to the (spherical) excess free energy with respect to the Gibbsian dividing
surface.

where \
I, = f_G G(4wr? dr, | (A.3)

and

rs+9
L= Gwanrdr (A.4)

re

The Gibbsian definition of o as an excess quantity is based on the same
work being written as:

W= (G, — G)V% + cAX

(A.5)
={Q, — G)(V, + V)) + cA¢.
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Equating Eqgs. (A.2) and (A.S5) then gives for the interfacial term:
O'AG = (Il - GSVI) + (Iz - GIVZ)’ (A.6)

which is the excess free energy with respect to the Gibbsian dividing
surface (shaded area in Fig. A.1).

The 1nterfacial tension is defined in the text based on the work to form
a critical nucleus [see Egs. (4.5) and (4.6)]:

16w ¢
W = 3 AG:’:;,. (A.7)

Equating this work to that defined in Eq. (A.5) and expressing A% and
& in terms of their radii gives an equation for r:

r’ + 3prr — 4p3 =0, (A.8)
where
o
p = AG. (A.9)

The only positive root of Eq. (A.8) is
ré = —2p, (A.10)

in accord with the Gibbsian definition of Eq. (2.3).

It 1s interesting to note that for a given r, and a choice of the location
of the dividing surface, the Gibbsian radius, r§& of Egs. (2.3) and (A.10)
also corresponds to the minimum value for o defined as an excess free
energy.?

Appendix B: Calculation of the Interfacial Tension for
a General Spatial Variation of the Free Energy

Assume that the atomic volume Q(r) in Eq. (4.1) is the same for all atoms
in the system, and that the free energy profile as a function of radius
through the interface is independent of the size of the crystal. The vana-
tion of the free energy per unit volume given in Eq. (4.2) can then be
specified as:
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G(r) = G, for r=r,,
G(r) = G(r —ry) for rr=r=r +3, (B.1)
G(r) = G for r,+8=r.

Using a change of variables
=r—r, (B.2)
the work to form a crystal of radius r, [Eq. (4.1)] can be written as:

4nr?

Wir) ==

AG, + fo *(Gix) — G)am(x + r)? dx. (B.3)

Define the n’th moment of G;(x) as:

n+ 1
In: 8"+1

)
[[6wx"dx n=01.2,... (B.4)
0

Define the corresponding dimensionless coefficients:

In — Gl
AG,

a, = (B.5)

Equation (B.3) then becomes:

=

W(r) =3

AG,(r} + 3aydr? + 3a,8%r, + a,33) =0.  (B.6)

The equilibrium condition of Eq. (4.3) is then:

dw
dr

S

= 4w AG (12 + 2a4dr, + a,8%) = 0. (B.7)

»
rs

The radius of the crystal in equilibrium with an undercooled melt is the
positive root of the factor in parentheses:

r* = —8a,(1 + B), (B.8)



32 FRANS SPAEPEN

where

2 (B.9)

The work to form the crystal is found by inserting the value of r¥ into
Eq. (B.6):

W* = -I—QEAGdﬁ?’CZ',

3 (B.10)

where ¢3 is a dimensionless factor that depends on the shape of G(x) and
the undercooling:

¢? = %[—ag(l + B)} + 3a3(1 + B)? — 3aga,(1 + B) + ay). (B.11)

The combination of Eqs. (B.10) and (B.13) then gives:

o = c3AG,,. (B.12)

The location of the Gibbsian dividing surface is found from Eq. (2.3):

rk = —2cb. (B.13)



