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Abstract—The zero creep load of a multilayered thin film is caleuiated for deformation by grain-boundary-
diffusion-limited flow (Coble creep). A kinetic model is used to relate the zero creep load for uniaxial
tension to the interfacial free energies and the grain dimensions.

1. INTRODUCTION

Interfacial free energies [1] or tensions, play an 1m-
portant role in nucleation, the coarsening of disper-
sions [2], grain growth [3], and intergranular brittle
fracture [4]. The increasing use of composite materials
has created a new impetus for their study [5, 6],

The standard method for an absolute measurement
of an interfacial tension is based on the determination
of the equilibrium angles at a triple point formed by
the interface and two free surfaces, the tensions of
which are known from zero creep experiments [7, 8].
Since the free surface tension can be strongly affected
by adsorption and structural variations (reconstruc-
tion), the requiremeni that the free surfaces in the
triple point and zero creep experiments be identical is
a source of considerable uncertainty.

This paper describes how an interfacial tension can
be measured directly in zero creep experiments on
multilayvered films with different interfacial areas. The
need to reproduce free surfaces identical to those in
earlier zero creep experiments, often under ultra-high
vacuum, is eliminated. The free surfaces of the multi-
layers only need be the same in all creep runs, which
can be accomplished by simple means and can be
tested directly in zero creep experiments on pure
films. In fact, the effect of the free surfaces can be
made arbitrarily small by having a sufficiently large
number of layers. and hence interfaces, in the multi-
layer.

The direct zero creep measurements of interfacial
lensions are easier than those of free surface tensions
in another way: since the number of interfaces in a
multilayer can, in principle, be arbitrarily large, the
zero creep load in the interfacial experiments 1s
generally much higher, and hence easier to measure.

Continuous progress in the development of tech-
niques for the deposition of multilayers makes it
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possible to create an increasing number of specific
interfaces for these measurements.

2. EARLIER ZERO CREEP EXPERIMENTS

Udin et al. first used the zero creep technique to
measure the frec surface tension of copper [9], silver
[10], and gold [11]. The theory [12] they developed for
zero crecp of a wire has been in use ever since [13-135).
Fisher and Dunn [16] extended it to zero creep of
thin films. They took into account the constraints
imposed on all four edges of the sample (fixed force
or fixed displacement) and used a constitutive law
relating stress and strain rate thal is approprate
for homogeneous deformation (power law creep,
Nabarro-Hernng-type diffusive creep).

An extension of the Fisher-Dunn theory that takes
account of the effects of grain boundaries was devel-
oped by Hondros [17]. He uses the same constitutive
law, peneralized to account for all three dimensions.
The few zero creep expenments conducted on thin
film samples have been analvzed with the Hondros
theory [17-19].

Some zero creep experiments have been done on
multi-<component, single phase wires [20—24] and thin
films [17, 19]. Most of that work dealt with the effect
of a bulk alloying element on the surface tension.
Some studied the changes in surface tension caused
by surface adsorption from the vapor [19, 24].

3. THE “FLUX MODEL" OF ZERO CREEP

The Udin theory for the zero tensile creep load is
thermodyramic in nature, in that it minimizes the free
energy of the complete system of interfaces and load.
This minimization is possible only if the strain in the
tensile direction is the only independent vanable. For
Udin’s cylindrical wire samples, this follows from the
equilibrium shape of the cross-section (round. if
isotropic) and the relation between length and radius

3007

FS174



3008

through the conservation of volume. In the
Fisher-Dunn—Hondros theory for a thin film sample,
the presence of three dimension variables necessitates
the introduction of a constitutive flow law. They
chose one that conserves volume and by which all
volume elements of the grain deform identically.

In the zero creep experiments on multilayers de-
scribed in the second paper, however, neither con-
dition is satisfied. The grains in the individual layers
do not have equilibrated cross-sections [25] and
deform by grain-boundary-diffusion-governed flow
(Coble creep), in which most of the volume elements
in the grains do not deform at all. Therefore, il was
necessary to develop a kinetic theory of zero creep, in
which the fluxes of atoms are explicitly evaluated.
This will be referred to as the “flux model™ of zero
creep.

The fluxes are driven by differences in the chemical
potential on the grain faces which. in turn, depend
on the applied load, the interfacial tensions, and
the grain dimensions. Therefore, by setting the strain
rate in the tensile direction, é_.,., equal to zero. the
model can be used to determine the relationship
between the zero creep load and the interfacial
tensions.

A number of approximations needed to be made,
since no analyticz! solution exists. First, the chemical
potentials ¢ are defined at the center of each face as
the average value over the entire face. The gradient
of the chemical potential, ¥y, used in calculating the
fluxes, is approximated by using the difference in the
values defined at the face centers, Ay, and the dis-
tance between the face centers /[,

Vit o — (1)
path
Second, all fluxes are assumed to follow the linear
diffusion law

J(No. atoms/sec - area) = — M, Vu )

where M, is the atomic mobility on the grain bound-
ary, assumed to be the same for all interfaces. 1f the
mobility were assumed different for each type of
boundary, they would appear in the final result in
dimensionless combinations. Third, it is assumed that
the layers are perfectly flat, which neglects the effect
of grain boundary grooving. Of course, the grains in
a thin film are no more orthorhombic than the grains
in @ wire specimen are cylindrical. However, for
wires, the solution that accounts for the exact grain
shape (in the absence of anisotropy) and Udin’s
cylindrical grain solution give zero creep loads that
differ by less than 5%, [26] which is the typical
experimental error. A similar result is anticipated
here.

Consider a single grain from either layer, as illus-
trated in Fig. 1(c). Of the eight flux paths that include
either the top or bottom face, and therefore contrib-
ute 10 €., only two are unique. Adding these fluxes,
weighted by their areas. A4,, gives the rate of atomic
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transfer that contributes to the strain in the tensile
direction

Au,
No. atoms/s = —ME.,ZA_.--[—H. (3)

Multiplying this atomic transfler rate by the atomic
volume ©Q, and dividing by the area TW of the upper
or lower face gives the rate at which the length, L. of
the grain changes

y QM Ap,

b i
i W] 4
L T™W Z i @
Normalization by the length L gives ¢, , the strain rate
in the tensile direction

QM Ap
gh i
=Ty L Y )

The difference in chemical potential between the
beginning and the end of the flux path has the form

Aj'.l'.‘ == (Gend e (rbcgm:ung)Q + :f‘gb AA I;hl -+ Prs AA :.;] (6)

WhETE Oyepinnine aNd 0., aTe the normal tractions on the
interfaces at, respectively, the beginning and the end
of the flux path. The other terms are changes in the
total interfacial free energy of the system. Note that
Ap, must be evaluated separately for cach of the flux
paths. The quantitics A4, and A4}, are defined as
the changes in the grain boundary area, 4,,. and the
free surface area. Ay, when a single atom of volume
Q tranverses flux path 1. This expression is appropri-
ate regardless of the shape of the grain.

4. FLUX MODEL OF ZERO CREEP OF A
MULTILAYER

The multilayer consists of a stack of identical
bilayers. The zero creep load P, for a bilayer is
evaluated wsing the flux method in the presence of
different stress states, indicated by the second rank
tensors ¢V’ and ¢, in layers 1 and 2 respectively. In
the coordinates shown in Fig. 1(a), the stress tensors,
by symmetry considerations, can be written in terms
of the principal stresses o' where the superscript
represents the layer, either 1 or 2, and the subscript
represents the component. or direction, and is be-
tween 1 and 3.

The six components of the two stress tensors are
not independent. Demanding equal tractions at the
interface between the lavers yields

r:."ll: = ‘7:1213 (7]

and demanding that the internal stresses be consistent
with the surface tractions yields

oy + Thad' =0 (8)
165 + Tooy = PiWy,. 9

Invoking the zero tractions on the front and back
faces yields the additional constraint

@y
g =g =0.

(10)
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The zero traction condition on the front and back
surfaces can be invoked because the multilayer is thin
in the normal direction. On the other hand, ¢4 and
6%’ change from zero to constant values over a
distance from the film edges similar to the layer
thickness. For the thin film case it is therefore legiti-
mate to neglect the actual boundary conditions, or,
equivalently, to assume that the surface tractions
match the far-field stresses. The far-field stresscs are
calculated in what follows.

The strain tensors €' and ¢, also diagonal, are
written in terms of their components ¢! using the
same convention for superscript and subscript used
for the stress tensor. The components of the strzin
rate tensors, ¢! and ¢, for small strains, zre the time
derivatives of the components of the strain tensors,
¢/, Because the layers are not free to move indepen-
dently of each other, strain rates in the lavers must he
equal in the two in-plane directions

.(1] -1
€yl =¢ (1)
L1y -2y

€, =€y, (12)

Due to the constani-volume constraint in cach laver,
these two equalities imply equal strain rates in the
third direction as well

10 Ay
ghit et

(13)

As seen on Fig. 1. the bilayver has total interfacial
areas

Ay=ny T Lon—nl T, Wy (14)
A =1 Tn Ly — 10 Ts Wi, (15)
Ap=2Lg, Wy (16)

where the subscript (if) indicates an interface be-
tween malerials / and j, ny' is the number of grain
boundaries per width, W, . in layer i, and n!" is the
number of grain boundaries per unit length, L;_. in
layer i. The factor of 2 (nor 3) 1n (16) avoids double
counting of the “free” surfaces in the multilzyer as a
whole. Because the bilayer is part of a multilayer,
both ““free™ surfaces are considered identical to the
internal interface between the layers., and all three
are therefore assigned in interfacial tension .. The
interfaces within each layer are grain boundaries with
average tensions y,, and y.., for boundariss within
layers 1 and 2 respectively.

In the derivation that follows, the two lavers of the
bilayer are treated separately. To do this, the inter-
facial tensi ‘n yy, is divided between the two resulting
interfaces as fiy,. for the surfaces of layer 1 and
(1 — f)y,- for the surfaces of laver 2, as illustrated in
Fig. 1(b). Although it is possible to partition »,.. [25]
1t is notl necessary to do this here. since the final
result turns out to be independent of the partitioning
factor f.

To find the in-plane strain rates in layer |, three
unique fluxes are considered. For each there are a
total of four equivalent paths, zs labeled in Fig. 1(c).
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Each flux 1s modeled by a dimensional constraint
imposed at constant grain volume: flux 1 is modeled
by constant W/, and grain volume T, L, W, flux 2 by
constant 7 and grain volume, and flux 3 by constant
L, and grain volume.

For layer 1, now considered independently as in
Fig. 1, the appropriate Ay, [equation (6)] for flux path,
is

Aﬂ,‘ == O G hepinaing )Q
+70 AAY + By AAYY. (17)

Dividing equation (14) by the number of grains in
layer 1, 7y "ny . gives the grain boundary area associ-
ated with a single grain

Ay =1L + W,). (18)

Note that this is half the actual area to avoid double
counting with neighboring grains. Strnilarly, dividing
equation (16) by n\'n!) gives the “[ree" surface

associated with the grain

Ap=2L W, (19

When an atom of volume {3, migrates along path 1.
while ¥, and the volume remain constant, the area
changes are

adl = 2 (20)
Lot h L
1
s o
AA',]:'=2?‘. ()
L

Substitution of equations (20) and (21) in (17} yields
Q Q,

Ap = —(Ufsn—clh:lﬂ—'r'nz—zﬁ}'u?] (22)
which, because ¢!’ =0 [equation (10)]. simplifies to
B Q Q .
ﬁm=—GA"QE—:'||L—:+2I??|3;|- 23)

When the same atom mgrates along path 2. while
7, and the volume remain constant, the area changes
are

: T i
ﬁArjllzf)q(?,I—L—) (24)

A4l =0.

(2
(25)
Subsutution of equations (24) and (25) in (17) vields
i {2} F 1 1
A= —(oy — o0 + 7,9, (W-Z . (26)
1 '.

When the same atom migrates along path 3, while
L; and the volume remain constant, the area changes
daIe

L3

_ Q

Adl = -Wj (27)
20,

Adll = = (28)

1
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Fig. 1. Schematic diagram of the two parts of a bilayer. For an individual grain 1n each layer as indicated:
(a) principal stresses; (b) assignment of interfacial and grain boundary free energies: (¢) flux routes
governing Coble creep.

Substitution of equations (27) and (28) in equation  Again, because o' = 0 [equation {10)] this simplifies
(17) yields to

Q, 20, . Q2
o T Ay gy, o o hanape S 30
W["'.B. e (29) Hy a> =%y W, + By T (30)

Ay = _{'TE?.” = U[:“)Ql —¥n
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Finally, from Fig. 1(c), the path lengths [ are

L+ T) )

[ = — 3l
= (31)
[Lg T Wz) e
L= ~F (32)
(T, + W) ;
= (33)

and the cross sections for the fluxes are
Ay =4W,0,, (34)
Hi=4T B, 35
As=4L, by, (36)

where &, 1s the grain boundary thickness. The factor

of 4 accounts for the equivalent paths. Like M, &,

1s assumed to be the same on all surfaces.
Equation (5) becomes

i QM

3 Aluj
L

A —.
Ll Tl w’l 4/;‘! : f.'
Substitution of equations (23), (26), (31). (32). (34),
and (35) into equation (37) gives the expression for
the strain rate in the tensile direction for layer !

1) _SQ$ Mgbégb

(37)

T OW\T L
. uf'. (4] . ! +;B 2
(L, +T) G J]iL__ }IE?I

(L+wy\ T T w T

(38)
Figureé 1(b) shows that the creep parameters for
layers 1 map exactly onto those for layer 2 if § is
replaced by (1 — f) and all superscripts and sub-
scripts that indicate layer number are adjusted ac-
cordingly. Thus equation (38) can be maodified to
vicld the corresponding strain rate in the tensile
direction for layer 2

e —8 Q% Mghégb
? W, T, L,

) WZ (]
{(Lz = Tg)(_"j -

4——--T—:— ; —oP +a¥
(L. + )

I i 2
-:_—1:"0‘( _B)“:?;J

nli-))

(39)
Using the relationships of equations (8) and (9)
between the stresses in the different layers and the
applied load P, this can be expressed in terms of Lhe
stresses in layer 1

o = BRI

i £b ogt
! W.T.L,

oW P, Ty
(L, + T} LW, T, .

AM A0
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1 2
— L‘, — Bl F:)

; T, i P
5 (L,+W,) ( T, Wi

TJ {1 rl EU
3 - L‘) (40)

The strain rate in layer 1 in remaining in-plane
direction is given by

M [ Aps A
e M (oA M\
Lnw L 4

Substitution of equations (26). (30), (32), (33), (33)

and (36) into equation (41) gives the expression for

the strain rate of layer 1 in the nontensile, in-plane

direction

gy —8 (o My,

4 =

B W, T L,
.Fi_(_ag“ + 3
lwi+mo\ ™" T
T, 4 (o, [ 1\
—'_"—_(LE-}—W_])'\ F3" T 03 +:1|(W.l Ll J 2

(42)

The expression for £5, the strain rate in the same
direction in layer 2. is derived through the same
superscript and subscript changes that were used to
derive €Y [equation (40)] from ¢} [equation (38)]

-2 __ _Sni"wxbaxh
£ = ——————

W, T, L,
L, 2 E 2
{m(_ﬁz Yo W2 =8 T)
7;
—m 63 +'O'-s +!L
(43]

As was done for ¢ in equation (40}, the relationships
of equations (8) and (9) between the stresses in the
different layers and the applied load P can be used o
eXpress r:‘f in terms of the stresses i layer 1

o —8Q§Mgbégh
T WATL

A Es g, 1
o+ TO\L: = w,

2
+(1 "ﬁ)‘!'le)"

T, P
(Ls+ W) T W

L i) 1 i) § ‘1 1 )
_i -__ig;-.{_-:” il ) 19 44
T« r] z hu(”"’; !2 ( }

P

Using equations (38). (40), (42), and (44), the
compatibility requirements in the two in-plane direc-
tons [equations (11) and (12) respeclively] can be
solved to determine the unknown stresses ¢’ and o’
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in terms of the applied load and grain dimensions.
The strain rate of the film in the tensile direction can
then be calculated by substituting the stresses into
equation (38) for ¢}’ or equation (40) for ¢, The
zero creep load P, is found by demanding

=1 (45)

in addition to the conditions of equations (11) and
(12).

The grains in the layers are usually equiaxed in the
plane. Therefore it can be assumed that W, = L, and
W, = L,, which simplifies the algebra considerably.
The zero creep load then becomes
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again be simiplified, using equations (51) and (52),
without the assumption of equal aspect ratios in
the two layers, to equation (50), but with x =x,
and p = (7, x;/x; +)/72. where x, = W,/T, and
x; = W,(T,. Thus, the aspect ratio, x|, of the layer
containing the more mobile species appears only in
the effective grain boundary tension for bilayers
composed of elements with considerably different
mobilities.

Application of the flux method to a single layer
thin film vields a formula for the nondimensionalized
zero creep load that is identical Lo (50) if . = 75, the
free surface tension, y = Yeb /¥ and x = W/T.

2B, By (A, T, + AT, ) + (T2 B, 4]+ T B 4D 5
A A (T, [(A,~ 2B,) + T (4, + 2B,)]

I
Py= Wy I:?':”IE == (‘;—,'] il s ‘%":’32)] : {1.0 -
where
o
A TwmwaT) 47
B, (48)
T

When the aspect ratios, W,/T,, have the same
value, x, in the two layers, P, has the particularly
simple form

Py =2Wgn (257 — x (7)) + 722)] (49)

it x+17

A naive mechanical estimate of the zero creep load
1s obtained by assuming that y,; is a force per unit
length that acts along the edge of the interface at the
bottom of the film; per bilayer, that total edge length
is 2Wg,. The “naive™ value of the zero creep load is
then 2W.7;. The present analysis, for square
grains, shows that the correction factor from this
value is

Py xQ2x—y)

quume x, 7} =
. ) 2Whnye 14x 4 2x?

(50)

where y = (3, + 72 )/y;;. The quantities 3,,/y,, and
¥22/712 ¢an be experimentally obtained from measure-
ments of triple point angles in the cregp specimens
themselves [27]. A representative plot of @°, for a
given value of », can be seen in Fig. 3. For small
aspect ratios, x, the zero creep load is compressive, as
indicated by the negative value of @*.

If the two elements are assumed to have different
mobilities M,, still independent of the type of inter-
face. equation (46) still applies. but equations (47)
and (48) are replaced by

. 51)
CTWWwAT) ¢
M.Q
;= ——, 52

If one of the elements has a higher mobility on the
grain boundaries (ie. M, > M,) equation (46) can

5. FLUX MODEL OF ZERO CREEP OF A THIN
FILM COMPOSED OF HEXAGONAL GRAINS

In order to estimate the magnitude of the geometri-
cal uncertainties in the previous analysis, creep in a
film with hexagonal grains has also been analyzed.
The results are similar to those for the square grains.

Figure 2 shows the sample geometry and grain
shape. Of the |12 flux paths that contribute to the €.,
only two are unique by symmetry considerations. The
six side faces within the layer are grain boundaries
with an interfacial tension y,,. They are assigned an
area

Ag=T(B+2C) (53)

to avoid double counting. The front and back faces
are free surfaces with an interfacial tension y; and
area

dg=J3(C* +2BC) (54)

To determine the strain rate €., the net atomic flow
from (3) is multiplied by the atomic volume  and
divided by the area of the surface to which the atoms
are migrating, T7C./3, and by the average length of
the grain, B+ C/2

(55)

Erensile =

QM Z ” A
TC./3B+CciyT " 4

Here, and in the following calculations of A4 and
AAY used in Ay, (6), it is assumed that the migrating
volume {) is deposited uniformly over the entire top
surface, with 2 on each side. This maintains a space
filling structure and keeps the grain dimensions un-
ambiguous. Because the resulting extension is in the
tensile direction, the applied stress, not its normal
component. will appear in the expressions for Ag,
[26]. _

To determine the incremental areas A4, and AAY
in equation (6), flux 1 is modeled by leaving T and the
grain volume constant. Flux 2 is modeled by leaving
C and the grain volume constant.
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Flux Routes

/ Lriim

Fig. 2. Schematic diagram of a thin film composed ol hexagonal celumnar grains, The flux routes
governing Coble creep are indicated on an individual grain.

From equations (53) and (54), and the constraints
for flux route 1, the migration of a single atom of
volume Q along route 1 is seen to result in the area
changes

Q /1 1"
s =—=(z-3) (56)
B
J3\E B
0.8
=
x D6
0
E -
S 0.4
S .
3 /
b g —3772,0.96)
E D.:E_— & ¢ :
= I -2"(x,0.58)
E " 4
5 0oF .
[ _' i
el g i i | " ! i
0‘20 1 2 “

Grain Aspect Ratio  x

Fig. 3. Correction factor, €, 1o the “namve” zero creep load,
2Wy, 1. @5 2 function of the aspect ratio. x, of an equiaxed
graic for a given value (0.96) of the ratio of the grain
boundary to interfacial free energies. Solid hine: sguare
grain; dotted line: hexagonal grain of equal volume.

and
AADP =0. (57)

The migration of the same atom along flux route 2 1s
seen Lo result in

-/30
AdR=—N"0 58
BPTOB+O) (8)
and
- 20
7 O o 9
Ad T (59)

Using (6), the difference in the chemical potential for
the two flux routes can now be written

Q /1 1
Ay = —Eﬂ—f—}'gb—-—( ) (60)

3 C B
eq_y YR 20
Apy= —6Q2 }gb(23+c]+fﬁ T (61)
Finally, from Fig. 2, the path lengths [, are
e (62)
7
Y S
L=3(/B'+C*+BC+T) (63)
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and the cross section of flux, is
A, =4T8, (64)
A4, =8Cé,, (65)

where 5., and M, are defined the same way as in
the case of the cubic grains. The factors of 4 and 8
in the expressions for 4, arise from the equivalent
paths.

Substitution of (60) through (65) into (55) yields
—160°M .5,
(2B + C)TC./3

flsled)

2C
- — =

x| —a —1 .\/ﬁ_ +7 e
o rc T

As with the square case, the equiaxed morphology of
the grains allows the substitution B = C, which vields

16 M, 6,
2 e
ICGATLY3

{ (r 2C )
R S R e
2C ,ﬁCJrT)

i ol ( 1 e 2)} 67)
\,/EC-}-T .*gbvfjc I&T E

Setting €,.n,. = 0 gives the zero creep stress

Etensile =

(66}

Crensile =

4C*? 2 I
Gy = Praci+ TC\/-S- (}'rs? — T ﬁ) (68)
and, using Py =TW,_ a, for the thin film geometry
2AC{TY
1+4(C/TY +./3C|T
b ¥

% (z S ) (69)
JiciT

Substitution of the nondimensional length variable
x, = C/T and the nondimensional free energy vari-
able y = 7,,/7; yields the correction factor, similar to

equation (50)
4y, (xh — —v—)
P, 23

5 War dxi— \,@xh fodl

To compare @*“*%(x,,y) with equation (70), the
grain volume TW? for the cubic case is equated with
that for the hexagonal case, {3\,/5);2 TC? Or

e | 2
="y 3./3

Py=2Wy v

" (xy, ) = (70)

(71)
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so that

=X uare fl —
N33

= 0.620x

sgquare ©
Substituting this into equation (70) gives

1.538x2—0.716x, 1
1.538x2 + 1.074x, + 1
which can now be compared directly to equation (50)
for the single layer with cubic grains.

The correction functions @5*(0.62x,,y) and
@iy y)are plotied as functions of x, in Fig. 3 for
a representative value of 7, /... It is evident that both
functions have a similar dependence on the grain
aspect ratio. Thus the flux model seems insensitive to
the exact shape of the grains, as long as they are
equiaxed. This makes it possible to analyze the results
for samples with a wide variety of two-dimensional
equiaxed grain shapes with a single model.

O (x, x 0.62x,, y) = (712)
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